1,976 research outputs found

    Petrology and tectonic development of supracrustal sequence of Kerala Khondalite Belt, Southern India

    Get PDF
    The granulite terrain of southern India, of which the Kerala Khondalite belt (KKB) is a part, is unique in exposing crustal sections with arrested charnockite growth in different stages of transformation and in varied lithological association. The KKB with rocks of surficial origin and incipient charnockite development, poses several problems relating to the tectonics of burial of vast area and mechanisms involved in expelling initial H2O (causes of dryness) for granulite facies metamorphism. It is possible to infer the following sequence of events based on the field and laboratory studies: (1) derivation of protoliths of KKB from granitic uplands and deposition in fault bounded basin (cratonic rift); (2) subhorizontal deep burial of sediments; (3) intense deformation of infra and supracrustal rocks; (4) early granulite facies metamorphism predating F sub 2 - loss of primary structure in sediments and formation of charnockites from amphibole bearing gneisses and khondalites from pelites; (5) migmatisation and deformation of metasediments and gneisses; (6) second event of charnockite formation probably aided by internal CO2 build-up; and (7) isothermal uplift, entrapment of late CO2 and mixed CO2-H2O fluids, formation of second generation cordierites and cordierite symplectites

    Self-consistent variational approach to the minimal left-right symmetric model of electroweak interactions

    Get PDF
    The problem of mass generation is addressed by a Gaussian variational method for the minimal left-right symmetric model of electroweak interactions. Without any scalar bidoublet, the Gaussian effective potential is shown to have a minimum for a broken symmetry vacuum with a finite expectation value for both the scalar Higgs doublets. The symmetry is broken by the fermionic coupling that destabilizes the symmetric vacuum, yielding a self consistent fermionic mass. In this framework a light Higgs is only compatible with the existence of a new high energy mass scale below 2 TeV.Comment: 5 pages, 3 figures. New comments added and typing errors in eq. 8 and 11 correcte

    First principles investigation of finite-temperature behavior in small sodium clusters

    Get PDF
    A systematic and detailed investigation of the finite-temperature behavior of small sodium clusters, Na_n, in the size range of n= 8 to 50 are carried out. The simulations are performed using density-functional molecular-dynamics with ultrasoft pseudopotentials. A number of thermodynamic indicators such as specific heat, caloric curve, root-mean-square bond length fluctuation, deviation energy, etc. are calculated for each of the clusters. Size dependence of these indicators reveals several interesting features. The smallest clusters with n= 8 and 10, do not show any signature of melting transition. With the increase in size, broad peak in the specific heat is developed, which alternately for larger clusters evolves into a sharper one, indicating a solidlike to liquidlike transition. The melting temperatures show irregular pattern similar to experimentally observed one for larger clusters [ M. Schmidt et al., Nature (London) 393, 238 (1998) ]. The present calculations also reveal a remarkable size-sensitive effect in the size range of n= 40 to 55. While Na_40 and Na_55 show well developed peaks in the specific heat curve, Na_50 cluster exhibits a rather broad peak, indicating a poorly-defined melting transition. Such a feature has been experimentally observed for gallium and aluminum clusters [ G. A. Breaux et al., J. Am. Chem. Soc. 126, 8628 (2004); G. A.Breaux et al., Phys. Rev. Lett. 94, 173401 (2005) ].Comment: 8 pages, 11 figure

    Water activities in the Kerala Khondalite Belt

    Get PDF
    The author and colleagues presented their determinations of water activities in various granulite-facies rocks of the Kerala Khondalite Belt. Using mineral equilibria, thermodynamic data, and assumed geopressure-geotemperature conditions of 5.5 kbar and 750 C, they calculated uniformly low a(H2O) values of about 0.27 over a large geographic region. They suggested that these conditions were produced by the presence of abundant CO2-rich fluids, derived either from deeper levels or from metamorphic reactions involving graphite

    Supersymmetry in Slow Motion

    Full text link
    We construct new theories of electroweak symmetry breaking that employ a combination of supersymmetry and discrete symmetries to stabilize the weak scale up to and beyond the energies probed by the LHC. These models exhibit conventional supersymmetric spectra but the fermion-sfermion-gaugino vertices are absent. This closes many conventional decay channels, thereby allowing several superpartners to be stable on collider time scales. This opens the door to the possibility of directly observing R-hadrons and three flavors of sleptons inside the LHC detectors.Comment: A reference added. The discussion on the Higgs sector expanded. The version accepted for publication in JHE

    The Little Hierarchy in Universal Extra Dimensions

    Get PDF
    In the standard model in universal extra dimensions (UED) the mass of the Higgs field is driven to the cutoff of the higher-dimensional theory. This re-introduces a small hierarchy since the compactification scale 1/R should not be smaller than the weak scale. In this paper we study possible solutions to this problem by considering five-dimensional theories where the Higgs field potential vanishes at tree level due to a global symmetry. We consider two avenues: a Little Higgs model and a Twin Higgs model. An obstacle for the embedding of these four-dimensional models in five dimensions is that their logarithmic sensitivity to the cutoff will result in linear divergences in the higher dimensional theory. We show that, despite the increased cutoff sensitivity of higher dimensional theories, it is possible to control the Higgs mass in these two scenarios. For the Little Higgs model studied, the phenomenology will be significantly different from the case of the standard model in UED. This is due to the fact that the compactification scale approximately coincides with the scale where the masses of the new states appear. For the case of the Twin Higgs model, the compactification scale may be considerably lower than the scale where the new states appear. If it is as low as allowed by current limits, it would be possible to experimentally observe the standard model Kaluza-Klein states as well as a new heavy quark. On the other hand, if the compactification scale is higher, then the phenomenology at colliders would coincide with the one for the standard model in UED.Comment: 25 pages, 2 figure

    Implications on SUSY breaking mediation mechanisms from observing Bs→μ+μ−B_s \to \mu^+ \mu^- and the muon (g−2)(g-2)

    Full text link
    We consider Bs→μ+μ−B_s \to \mu^+ \mu^- and the muon (g−2)μ(g-2)_\mu in various SUSY breaking mediation mechanisms. If the decay Bs→μ+μ−B_s \to \mu^+ \mu^- is observed at Tevatron Run II with a branching ratio larger than ∼2×10−8\sim 2 \times 10^{-8} , the noscale supergravity (including the gaugino mediation), the gauge mediation scenario with small number of messenger fields and low messenger scale, and a class of anomaly mediation scenarios will be excluded, even if they can accommodate a large muon (g−2)μ(g-2)_\mu. On the other hand, the minimal supergravity scenario and similar mechanisms derived from string models can accommodate this observation.Comment: 4 pages, 3 figure
    • …
    corecore